ECE 150 Digital Logic Design, Fall 2023
Final Exam, November 29th 2023 \qquad
The exam has 100 pts. Closed book, no calculators. Write all answers and show all work inside your blue book. Show your work for partial/full credit. Read carefully.

Problem 1 (5 pts).
Give the truth-table of a tri-state buffer and briefly describe its behavior. Under what circumstances are they useful?

Problem 2 (10 pts).

In the following questions, provide truth tables in terms of current state Q_{n}, control variables (D or J and K), and next state Q_{n+1}.
(a) Give the truth table of a positive edge-triggered D flip-flop.
(b) Give the truth table of a positive edge-triggered JK flip-flop.
(c) Using a single positive edge-triggered D flip-flop (plus any gates and muxes/demuxes), implement a positive edge-triggered JK flip-flop.
(d) Using additional gates, how can you augment the circuit from (c) to be negative edge triggered?

Problem 3 (15 pts).

Consider the circuit diagram in Figure 1, with input A, output Y, and state $Q_{1} Q_{0}$.
(a) Is the circuit synchronous or asynchronous? Why?
(b) Determine a boolean expression for Y in terms of the input and state variables.
(c) Construct a state transition table for the circuit
(d) Give a corresponding state transition diagram. Ensure each transition arrow is labeled, and that every state bubble contains the value of the state varables.

Problem 4 (15 pts).

Using several of the 1024 x 8 RAM chip shown in Figure 2 and any additional combinatorial circuitry (muxes, gates, etc.), implement an equivalent 2048x32 RAM chip. Carefully label your equivalent circuit's write-enable (not), chip-select (not), input/output, and address pins. Indicate MSB and LSB on your address pins.

Figure 1: Circuit diagram.

Figure 2: RAM chip.

Figure 3: Counter circuit.

Problem 5 (15pts).

Consider the Mod-N counter in Fig. 3. Assume the circuit starts in the $Q_{1} Q_{0}=00$ state.
(a) Is this circuit synchronous or asynchronous? Why?
(b) Draw a timing diagram to determine the states of the counter. Include glitch-states from propagation delay (if they exist).
(c) Denote the FF states below your timing diagram in decimal, interpreting Q_{1} as the MSB and Q_{0} as the LSB.
(d) What Mod is the counter?

Problem 6 (15pts).

A bidirectional shift-register (BSR) is one in which bits are shifted from left to right ($R=1$) or right to left $(R=0)$ on the edge of a clock pulse, depending on input R.
(a) Design a 4-bit BSR with edge-triggered D flip-flops. Your BSR should have a left Datainput D_{L}, right Data-input D_{R}, a direction pin R, and parallel ouput pins $Q_{0} Q_{1} Q_{2} Q_{3}$. You may use gates and muxes/demuxes in your design.
(b) Briefly describe how you can augment your design to allow for parallel loading of data into the register.

Problem 7 (20 pts).

In this problem, you will build a "pause-able" synchronous Mod-4 binary up counter with JK flip-flops, which pauses counting when an input signal \bar{P} is low, and otherwise continues counting up (with wrap-around).
(a) Construct a state transition diagram for your counter.
(b) Convert your state transition digram to a table, labeling current states, inputs, control variables, and next states. Determine values for your control variables to achieve the desired transitions.
(c) Determine simplified boolean expressions for your control variables.
(d) Draw a logic diagram of your circuit. Label the clock, \bar{P}, and your state variables clearly.

Problem 8 (5 pts).
Consider the "pause-able" Mod-4 synchronous circuit constructed in the previous problem.
(a) Using pauseable counter(s), implement a Mod-16 synchronous up-counter. Label your most-significant and least significant counters.
(b) Implement a "chain-able" Mod-4 up-counter, such that the chain-in $\left(\mathrm{C}_{\mathrm{in}}\right)$ pin of a more significant chainable counter could be connected to the chain-out pin ($\mathrm{C}_{\text {out }}$) of a less significant chainable counter.

