ECE 150 Digital Logic Design, Fall 2023
Project 1: 4-bit Arithmetic Logic Unit
Due October 4th 2023
Using any of the following ICs in JLab, gates, muxes, demuxes, decoders, implement a 4-bit Arithmetic Logic Unit (ALU) as a combinatorial logic circuit (no memory circuitry or sequential logic). Your ALU must accept two 4 -bit words as input (A, B), a 4-bit op-code (Op) and output a single 4-bit word (Y).

Your ALU must be able to perform the following operations:

$$
\begin{aligned}
& (O p=0000) \text { No-op }(Y=A) \\
& (O p=0001) \text { Binary Addition }(Y=A+B) \\
& (O p=0010) \text { Binary Subtraction }(Y=B-A \text {, in two's complement }) \\
& \left.(O p=0011) \text { Logical Shift of A (ex. if } A=0101 \text {, then } Y=101 C_{\text {in }}\right) \\
& (O p=0100) \text { Bitwise OR }(Y=A+B) \\
& (O p=0101) \text { Bitwise AND }(Y=A B) \\
& (O p=0110) \text { Bitwise NOT }(Y=\bar{A}) \\
& (O p=0111) \text { Bitwise XOR }(Y=A \oplus B)
\end{aligned}
$$

You will demonstrate the correct output of your circuit at the beginning of class on the due-date, and submit a typed PDF report.

Circuit Requirements:

- Provide inputs A_{3-0}, B_{3-0}, and $O p_{3-0}$ via three 4-input DIP switches (active-high) from left to right.
- Use no more than four breadboards.
- Use red wire for 5 V and black for ground.
- Display your outputs on LEDs.

Report Requirements:

- Introduction: restate the problem in your own words
- Methods: detail how you arrived at your implementation. You must include,
- truth-table(s)
- a derivation of your final implemented expressions (boolean algebra or K-map)
- logic diagram(s)
- Implementation: detail your circuit, including,
- a picture of your circuit with labeled ICs and labeled subcircuits.
- Conclusion:
- What are the pros and cons of your design?

Grading:

- Correct circuit operation (demo) (40 pts)
- Report (60 pts)

Additional Considerations:

- Circuit
- Can you combine ALUs with a classmate to create an 8 -bit ALU? (+5 pts to project)
$-(+3$ pts to project) $(O p=1000)$ Arithmetic Shift of A (in two's complement)
* ex. if $A=-3_{10}$, then $Y=-6_{10}$
- Neatness (color coding, right-angles only, no crossing wires) (+2/100 pts to midterm exam)
- Number of ICs used $(+5 /+3 /+1$ points to midterm for fewest chips used, ranked by class).
- Report
- Consistent typesetting
- Schematics and diagrams done in CAD (or hand-drawn EXTREMELY NEATLY)
- Correct use of technical terms
- All Figures, Images, and Tables have captions and are referenced in the text

You may find it helpful to make use of simulation software, such as Logisim or LogisimEvolution.

