
Self-Supervised Low-Field MRI Denoising via Spatial Noise Adaptive CDLNet
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Figure 1: Left: coil-combined magnitude LFMR
images. Middle: noise-level maps. Right: CDL-
Net denoising.

Purpose: Recent years have seen a growing interest in Low-Field
MRI machines due to continued advancement in hardware, novel suc-
cesses of machine-learning reconstruction, and greater overall acces-
sibility of LFMRI machines [1]. LFMRI often necessitates averaging
multiple fully sampled k-space acquisitions to obtain a signal of suffi-
ciently high SNR. To accelerate acquisition, this averaging may be re-
duced or foregone, with detriment to SNR. In multi-coil setups, the corre-
sponding image-domain reconstruction often exhibits a spatially varying
noise-level due to the uniform noise-levels observed in each coil con-
tributing to the coil-combined image via a spatially varying sensitivity
map. These coil noise-levels and sensitivity maps can be estimated
from the acquisition to produce an estimated spatially varying noise-
level map for the coil-combined image. Deep-learning methods are well
suited for tackling such a spatially varying denoising problem by implic-
itly learning signal and noise distribution specifics in a data-driven fash-
ion. This work proposes a novel deep-learning framework for removing
spatially varying image noise from coil-combined noisy LFMR images,
without ground-truth labels. We consider our observations to be gen-
erated from some random process with a spatially varying noise-level,
y ∼ N (x, diag(σmap)).
Methods: The Convolutional Dictionary Learning Network: The CDL-
Net denoising architecture [2] has its origins in basis pursuit de-
noising (BPDN) from the classical wavelet denoising literature, and
its layers are defined as a learned iterative thresholding: z(k+1) =
T (k)
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for K layers, where z(k) is a subband latent
representation and the final denoising is given by a synthesis convolutional dictionary, x̂ = fΘ(y,σmap) = Dz(K). CDLNet
can tune its denoising strength at inference by augmenting the input noise-level map, as shown in Figure 2.
MCSURE Denoising: For observations contaminated by AWGN, Stein’s Unbiased Risk Estimator (SURE) offers an approx-
imation to the mean-squared error metric in the absence of ground-truth data. A Monte-Carlo approach is required to use
SURE in practice [2]. This work adapts the MCSURE loss for a spatially varying noise-power to train a CDLNet denoiser
in a self-supervised manner. We increase the diversity of training samples by augmenting the original noisy images y with
additional AWGN from their original spatial distribution, i.e. ỹ ∼ N (y, ασmap) with α ∼ U(0, a). This presents the network
with a wider range of noise-levels during training, which we observe as beneficial for training. The network is trained from
augmented samples via the MCSURE loss, minΘ

∑
y∼D MCSURE(y, fΘ(ỹ, (1 + α)σmap); (1 + α)σmap).
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Figure 2: Block diagram of CDLNet.

Results: Preliminary results were obtained on an unlabeled
dataset of 0.55T LFMR lung images containing with a total 39
samples. A CDLNet model was trained via the self-supervised
MCSURE scheme described for the denoising of complex-valued
coil-combined images, with noise-level maps pre-estimated from
the data. Qualitative results in Figure 1 demonstrate the learned
network is able to maintain details seen in high SNR image re-
gions while employing a stronger denoising on low SNR image
regions (see Fig. 1).
Discussion and Conclusion: This work proposes a self-supervised learning scheme (based on the MCSURE loss) for
removing spatially varying noise. The proposed method leverages the noise-adaptive thresholds of a convolutional dictionary
learning based deep-denoiser to perform a spatially varying denoising. However, the results show undesired noise is not
completely removed, and some anatomical structures are unnecessarily blurred from the denoising. This may be due to
imperfect noise-level maps obtained from coil sensitivity map estimation on the original noisy samples. Future work will
consider leveraging a mixture of coil-combined measurement data and individual coil data, as well as noise-level map
refinement, to achieve more balanced spatially varying noise-removal results.
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