Learning Deep Denoisers for Low-Field MRI with Noisy Data

Nikola Janjušević

Presenting work done in collaboration with: Prof. Li Feng, Prof. Yao Wang

Center for Advanced Imaging Innovation and Research (CAI²R)

Department of Electrical and Computer Engineering

New York University

February 21st 2024

Outline

- Motivation
- Noise and Observation Model
- Deep Denoiser Architecture
- Learning Deep MRI Denoisers
- Summary and Future Work

Outline

- Motivation
 - Low-Field MRI
 - Existing Tools
- Noise and Observation Model
- Deep Denoiser Architecture
- 4 Learning Deep MRI Denoisers
- Summary and Future Work

Low-Field MRI Acquisition

- Low-cost construction
- Slower T2*-decay
 - Promising for new applications (lung-imaging)
- Low-Field strength ⇒ Low-SNR
- Scan Averaging ⇒ High(er)-SNR
- K-space undersampling K-space undersampling Scan Denoising

CBI Seminal Janjušević (NYU)

Goals

To develop a technique for Low-Field MRI Denoising: SNAC-DL

- Data-driven denoiser
- Coil-Number Agnostic
- No ground-truth data necessary (Unsupervised / Self-Supervised)

Self-supervised Noise-Adaptive Convolutional Dictionary-Learning (SNAC-DL) for LFMRI

Deep Neural Network Training

Parameterized Denoiser: $f(y) = f(y, \Theta)$.

Supervised Loss Function

Over distribution of clean (x) and noisy (y) images (p(x,y)):

$$\mathcal{L} = \mathbb{E}_{p(x,y)}[\operatorname{distance}(\boldsymbol{x}, f(\boldsymbol{y}))]$$

$$= \iint_{\mathbb{R}} \operatorname{distance}(\boldsymbol{x}, f(\boldsymbol{y})) p(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y}$$

$$\approx \frac{1}{|\mathcal{D}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}} \operatorname{distance}(\boldsymbol{x}, f(\boldsymbol{y}))$$

Optimize Θ via SGD on loss function: $\Theta \leftarrow \Theta - \operatorname{lr} * \nabla_{\Theta} \mathcal{L}$.

MSE Loss

$$\mathcal{L}_{\text{MSE}} = \mathbb{E}[\|\boldsymbol{x} - f(\boldsymbol{y})\|_2^2]$$

Noise2Noise Loss

Self-Supervised Loss

Consider two noisy observations:

$$y = x + \nu_y$$
$$z = x + \nu_z$$

with noise independent to signal ($\nu \perp x$).

Noise2Noise Loss function

$$\mathcal{L}_{\text{N2N}} = \mathbb{E}[\|\boldsymbol{z} - f(\boldsymbol{y})\|_2^2]$$

$$\begin{split} \mathcal{L}_{\text{MSE}} &= \mathbb{E}[\|\boldsymbol{x} - f(\boldsymbol{y})\|_2^2] \\ &= \mathbb{E}[\|\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{z} - f(\boldsymbol{y})\|_2^2] \\ &= \mathcal{L}_{\text{N2N}} - N\sigma_z^2 + 2\,\mathbb{E}[\langle \boldsymbol{\nu}_z, f(\boldsymbol{y}) \rangle] \\ &= \mathcal{L}_{\text{N2N}} - N\sigma_z^2 \qquad (\boldsymbol{\nu}_z \perp \boldsymbol{\nu}_y, \, \mathbb{E}[\boldsymbol{\nu}_z] = 0) \\ \nabla_{\boldsymbol{\Theta}} \mathcal{L}_{\text{MSE}} &= \nabla_{\boldsymbol{\Theta}} \mathcal{L}_{\text{N2N}} \end{split}$$

SURE Loss

Self-Supervised Loss

Consider one noisy observation:

$$\mathbf{y} = \mathbf{x} + \mathbf{\nu}, \quad \mathbf{\nu} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$$

with noise independent to signal ($\nu \perp x$).

SURE Loss function

$$\mathcal{L}_{SURE} = \mathbb{E}[\|\mathbf{y} - f(\mathbf{y})\|_{2}^{2} - N\sigma^{2} + 2\sigma^{2}\nabla_{\mathbf{y}} \cdot f(\mathbf{y})]$$

$$\mathcal{L}_{\text{MSE}} = \mathbb{E}[\|\mathbf{x} - f(\mathbf{y})\|_{2}^{2}]$$

$$= \mathbb{E}[\|\mathbf{x} - \mathbf{y} + \mathbf{y} - f(\mathbf{y})\|_{2}^{2}]$$

$$= \mathbb{E}[\|\mathbf{y} - f(\mathbf{y})\|_{2}^{2} - N\sigma^{2} + 2\langle \boldsymbol{\nu}, f(\mathbf{y})\rangle]$$

$$= \mathbb{E}[\|\mathbf{y} - f(\mathbf{y})\|_{2}^{2} - N\sigma^{2} + 2\sigma^{2}\nabla_{\mathbf{y}} \cdot f(\mathbf{y})]$$

$$= \mathcal{L}_{\text{SURE}}$$

$$\nabla_{\Theta} \mathcal{L}_{\text{MSE}} = \nabla_{\Theta} \mathcal{L}_{\text{SURE}}$$

Approximate divergence term with finite-difference:

$$\nabla_{\mathbf{y}} \cdot f(\mathbf{y}) \approx \mathbf{b}^T \left(\frac{f(\mathbf{y} + \epsilon \mathbf{b}) - f(\mathbf{y})}{\epsilon} \right), \quad \mathbf{b} \sim \mathcal{N}(0, \mathbf{I}).$$

Losses

Loss	Pro	Con	
Supervised	- desired objective	- ground-truth needed	
Noise2Noise	- no ground-truth needed - equivalent to $\mathcal{L}_{ ext{MSE}}$	- 2 noisy samples needed	
SURE	- only 1 noisy sample needed	- must estimate σ - only approximately equivalent to $\mathcal{L}_{ ext{MSE}}$	

Outline

- Motivation
- Noise and Observation Model
- Deep Denoiser Architecture
- 4 Learning Deep MRI Denoisers
- Summary and Future Work

multi-coil

Multi-coil image (y)

$$y = Sx + \nu$$

$$\boldsymbol{\nu}[i] \sim \mathcal{CN}(0, \boldsymbol{\Sigma}) \quad \forall \; i$$

Sensitivity maps (s)

$$\sum_{i=1}^{C} |s_i|^2 = 1 \quad \text{for all pixels}$$

Figure: **Top**: Multi-coil image-space (y). **Bottom**: Sensitivity maps (s).

coil-combined

Coil-combined image (\tilde{y})

$$\tilde{\mathbf{y}} = \mathbf{S}^H \mathbf{y} = \mathbf{x} + \tilde{\mathbf{\nu}}$$

 $\tilde{\mathbf{\nu}} \sim \mathcal{CN}(0, \mathbf{diag}(\boldsymbol{\sigma}^2))$

Effective noise-level (σ)

$$\sigma[i]^2 = (s[i])^H \Sigma(s[i]) \quad \forall i$$

Figure: **Top**: Coil-combined image-space (\tilde{y}) . **Bottom**: Noise-level maps (σ) .

whitened multi-coil

Whitened MC (y_w)

$$\mathbf{y}_{w}[i] = \mathbf{\Sigma}^{-1/2}(\mathbf{y}_{w}[i]) \quad \forall i$$

$$\mathbf{y}_{w} = \mathbf{S}\mathbf{x}_{w} + \mathbf{\nu}_{w}$$

$$\mathbf{\nu}_{w} \sim \mathcal{CN}(0, \sigma_{w}^{2}\mathbf{I})$$

Whitened s-maps (S_w)

$$egin{aligned} s_w[i] &= rac{\mathbf{\Sigma}^{-1/2}(s[i])}{z[i]} \quad orall i \ z[i] &= \sqrt{(s[i])^H \mathbf{\Sigma}^{-1}(s[i])} \quad orall i \end{aligned}$$

Figure: **Top**: Whitened MC image (y_w) . **Bottom**: Whitened s-maps (s_w) .

13/37

whitened coil-combined

Whitened CC (\tilde{y})

$$egin{aligned} ilde{oldsymbol{y}}_w &= oldsymbol{S}_w^H oldsymbol{y}_w = oldsymbol{x}_w + ilde{oldsymbol{
u}}_w \ \sim \mathcal{CN}(0, \ \sigma_w^2 oldsymbol{I}) \end{aligned}$$

Renormalized Whitened CC

 \tilde{y}_w/z

Figure: **Top**: Whitened CC image (\tilde{y}_w) . **Bottom**: Renormalized CC image (\tilde{y}_w/z) .

Summary

Spaces

• CC:

$$\tilde{\mathbf{y}} \sim \mathcal{CN}(\mathbf{x}, \mathbf{diag}(\boldsymbol{\sigma}^2))$$

Whitened-CC:

$$\tilde{\boldsymbol{y}}_{w} \sim \mathcal{CN}(\boldsymbol{x}_{w}, \ \sigma_{w}^{2}\boldsymbol{I})$$

Renorm-Whitened-CC:

$$\tilde{\mathbf{y}}_{w}/\mathbf{z} \sim \mathcal{CN}(\mathbf{x}, \, \sigma_{w}^{2} \, \mathbf{diag}(1/\mathbf{z}))$$

Proposed Use

- Coil-combined ⇒ coil-number agnostic
- Denoise $\tilde{y}_w \Rightarrow$ constant noise-level
- Display / evaluate with renormalization

Outline

- Motivation
- Noise and Observation Model
- Open Denoiser Architecture
- 4 Learning Deep MRI Denoisers
- 5 Summary and Future Work

Sparse Representation

Observation model: $y = x + \nu$, $\nu \sim \mathcal{N}(0, \sigma^2 I)$

Given dictionary D, assume: $\exists z \text{ s.t. } x = Dz$, and z is sparse

Basis Pursuit DeNoising (BPDN)

$$\underset{z}{\text{minimize}} \quad \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{D} \boldsymbol{z} \|_{2}^{2} + \lambda \| \boldsymbol{z} \|_{1}$$

(Note: $\lambda = \lambda(\sigma)$)

Iterative Soft-Thresholding Algorithm (ISTA)

Let $z^{(0)} = \mathbf{0}$, step-size $\eta \in (0, 1/L]$, $L = \|\mathbf{D}\|_2$.

$$z^{(k+1)} = \operatorname{ST}_{\eta\lambda} \left(z^{(k)} - \eta \boldsymbol{D}^T (\boldsymbol{D} z^{(k)} - \boldsymbol{y}) \right), \quad k = 0, 1, \dots \infty,$$

$$\operatorname{ST}_{\tau}(z) = \operatorname{sign}(z) \circ \operatorname{ReLU}(|z| - \tau),$$

Obtain $\hat{x} = Dz^{(\infty)}.$

CDLNet: Unrolling Convolutional Dictionary Learning

ISTA:

$$z^{(k+1)} = \operatorname{ST}\left(z^{(k)} - \eta D^{T}(Dz^{(k)} - y), \, \eta \lambda\right), \quad k = 0, 1, \dots, \infty$$

CDLNet: LISTA + D

$$z^{(k+1)} = \operatorname{ST}\left(z^{(k)} - \boldsymbol{A^{(k)}}^{T}(\boldsymbol{B^{(k)}}z^{(k)} - \boldsymbol{y}), \, \boldsymbol{\tau^{(k)}}\right), \quad k = 0, 1, \dots, K - 1,$$
$$\hat{\boldsymbol{x}} := f(\boldsymbol{y}, \boldsymbol{\Theta}) = \boldsymbol{D}\boldsymbol{z^{(K)}}\hat{\boldsymbol{x}} := f(\boldsymbol{y}, \hat{\boldsymbol{\sigma}}, \boldsymbol{\Theta}) = \boldsymbol{D}\boldsymbol{z^{(K)}}$$

- \bullet $A^{(k)T}$, $B^{(k)}$ conv. analysis, synthesis respectively
- $\bullet \ \boldsymbol{\tau}^{(k)} \in \mathbb{R}^{M}_{+} \ \boldsymbol{\tau}^{(k)} = \boldsymbol{\tau}_{0}^{(k)} + \hat{\sigma} \boldsymbol{\tau}_{1}^{(k)} \in \mathbb{R}^{M}$
- D conv. synthesis "dictionary"
- $m{\Theta} = \{ [m{A}^{(k)}, m{B}^{(k)}, m{ au}^{(k)}]_{k=0}^{K-1}, m{D} \}$

Outline

- Motivation
- Noise and Observation Model
- Open Denoiser Architecture
- Learning Deep MRI Denoisers
 - MRI Specific Losses
 - Synthetic Denoising
 - Prostate Image Denoising
 - Lung Image Denoising
- Summary and Future Work

Average2Average Loss (Avg2Avg)

- coil-combined scans: \tilde{y}_a , \tilde{y}_b
 - with independent noise
- estimate noise-level in b: $\hat{\sigma}$
 - for CDLNet adaptive-thresholds only
- (optional) pre-whiten data
 - to improve coil-combination

Coil2Coil Loss

$$y = Sx + \nu$$

$$\begin{bmatrix} y_A \\ y_B \end{bmatrix} = \begin{bmatrix} S_A \\ S_B \end{bmatrix} x + \begin{bmatrix} \nu_A \\ \nu_B \end{bmatrix}$$

$$\tilde{y}_1 = \frac{1}{\|S_A\|^2} S_A^H y_A = x + \frac{1}{\|S_A\|^2} S_A^H \nu_A$$

$$\tilde{\mathbf{y}}_2 = \frac{1}{\|\mathbf{s}_B\|^2} \mathbf{S}_B^H \mathbf{y}_B = \mathbf{x} + \frac{1}{\|\mathbf{s}_B\|^2} \mathbf{S}_B^H \mathbf{\nu}_B$$

If y is coil-whitened with $\nu \sim \mathcal{CN}(0,\,\sigma_{_{\!w}}^2I)$, then,

$$ilde{oldsymbol{y}}_1 \sim \mathcal{CN}\left(oldsymbol{x}, \, rac{\sigma_w^2}{\|oldsymbol{s}_A\|^2}
ight) \ ilde{oldsymbol{y}}_2 \sim \mathcal{CN}\left(oldsymbol{x}, \, rac{\sigma_w^2}{\|oldsymbol{s}_B\|^2}
ight)$$

 $egin{aligned} oldsymbol{y}_2 &\sim \mathcal{CN} \ ig(oldsymbol{x}, \ rac{\|oldsymbol{s}_B\|^2}{\|oldsymbol{s}_B\|^2} \end{aligned}$ with $ilde{
u}_1 \perp \!\!\!\!\perp ilde{
u}_2 \ ext{and} \ \mathbb{E}[ilde{
u}] = 0.$

Readout2Readout Loss (Ro2Ro)

Spiral Sampling

- split into even/odd along readout dimension
 - may introduce aliasing artifacts
- estimate noise-level in odd: $\hat{\sigma}$
 - for CDLNet adaptivethresholds only
- (optional) pre-whiten data
 - to improve coil-combination

MRI Losses

Loss	Pro	Con
Supervised	- desired objective	- ground-truth needed
Avg2Avg	- no ground-truth needed - equivalent to $\mathcal{L}_{ ext{MSE}}$	- 2 noisy samples needed
SURE	- only 1 noisy sample needed	- must estimate σ - only approximately equivalent to $\mathcal{L}_{ ext{MSE}}$
Coil2Coil	- only 1 noisy sample needed - equivalent to \mathcal{L}_{MSE}	- must estimate Σ for whitening - must store multi-coil data
Ro2Ro	- only 1 noisy sample needed - equivalent to $\mathcal{L}_{\mathrm{MSE}}$	- May generate readout aliasing artifacts

Synthetic Denoising

- Generate random (diagonal-dominant) matrix L.
- Let $\Sigma = LL^H$.
- Create noisy sample: $y = x + L\nu$ for all pixels, $\nu \sim \mathcal{CN}(0, I)$.

Table: Synthetic Multi-Coil Noise with Coil-Combined Denoising on MoDL Brain Dataset. PSNR / 100×SSIM shown.

Loss	Noise-samples per-image	Non-Whitened	$\hat{\Sigma}$ -Whitened
Supervised	n/a	31.1 / 90.3	32.3 / 92.7
Avg2Avg	2	31.1 / 89.9	32.3 / 92.7
SURE	1	30.4 / 88.9	31.5 / 91.8
Coil2Coil	1	-	32.0 / 92.0

- Whitening improves results
- Avg2Avg equivalent to Supervised

Synthetic Denoising

Janjušević (NYU)

Denoising After GRAPPA Reconstruction

Prostate coil data went through 2x GRAPPA (linear) k-space filling:

- Coil data (k, y) is no longer i.i.d. and noise-level estimation is invalid.
- Only Avg2Avg does not require noise-level estimation.

0.55T Lung Image Denoising

Janjušević (NYU) Learning Deep Denoisers with Noisy MRI CBI Seminar

0.55T Lung Image Denoising

Janjušević (NYU)

K-space Analysis

- Source of error: crude noise-level estimation (NLE)
 - Lung: must take into account spiral trajectory (SURE)
 - Prostate: must take into account GRAPPA recon (SURE, Coil2Coil)
- Avg2Avg is the most forgiving method
- Coil2Coil not sensitive to NLE scale-factor
- Ro2Ro preliminary results are promising

Outline

- Motivation
- Noise and Observation Model
- Deep Denoiser Architecture
- 4 Learning Deep MRI Denoisers
- Summary and Future Work

Summary and Future Work

- Developed SNAC-DL for Self-Supervised MRI Denoising
- No dynamic (time) dimension required
- Tested in Synthetic Data and Low-Field Lung and Prostate Images
- Proposed different self-supervised losses for MRI
 - Avg2Avg
 - Coil2Coil
 - Ro2Ro

- Sinogram-N2N for Radial Samping, Propeller Sampling Denoising
- Joint Compressed-Sensing and Denoising
- T2w-Guided Diffusion-Weighted MRI Denoising

Acknowledgements

- Hersh Chandarana, MD
- Jingjia Chen, PhD
- Mary Bruno
- Haoyang Pei, MS
- Mahesh Keerthivasan, PhD
- Angela Tong, MD
- Terlika Sood, PhD
- Christoph Maier, MD
- Gloria Huang
- Patricia Johnson, PhD
- Daniel K Sodickson, MD, PhD