Nikola Janjušević

A Unitary Transform of an i.i.d. Normal Random Variable

Consider an independent identically distributed Normal random variable x\mathbf{x} with mean μCC\mu \in \mathbb{C}^C and covariance ΣCC×C\Sigma \in \mathbb{C}^{C \times C}. Let x\mathbf{x} have NN vector-valued pixels, each with CC channels, i.e. xRNC\mathbf{x} \in \mathbb{R}^{NC} and

x[i]N(μ, Σ)1iN. \mathbf{x}[i] \sim \mathcal{N}(\mu, ~ \Sigma) \quad \forall \quad 1 \leq i \leq N.

Further, let x\mathbf{x} have the channel-wise vectorization x=[x1T, x2T, , xCT]T\mathbf{x} = [\mathbf{x}_1^T, \, \mathbf{x}_2^T, \, \dots, \, \mathbf{x}_C^T]^T. We can then write this via Kronecker product notation as

xN(μ1N, ΣIN). \mathbf{x} \sim \mathcal{N}(\mu \otimes \mathbf{1}_N, ~ \Sigma \otimes I_N).

Now, consider a linear transformation y=Ax\mathbf{y} = A\mathbf{x}. We know from linearity of expectation that E[Ax]=AE[x]=A(μ1N)\mathbb{E}[A\mathbf{x}] = A\mathbb{E}[\mathbf{x}] = A(\mu \otimes \mathbf{1}_N) and that Cov(Ax)=ACov(x)AH\mathrm{Cov}(A\mathbf{x}) = A\mathrm{Cov}(\mathbf{x})A^H.

Further, consider a channel-wise unitary matrix, i.e. A=(ICQ)A = (I_C \otimes Q) where QCN×NQ \in \mathbb{C}^{N\times N} is unitary. The Kronecker notation here means that AA is a block diagonal matrix with CC blocks of QQ on its diagonal. So, the mean and covariance of our transformed variable are

E[Ax]=(ICQ)(μ1N)Cov(Ax)=(ICQ)(ΣIN)(ICQ)H \mathbb{E}[A\mathbf{x}] = (I_C \otimes Q)(\mu \otimes \mathbf{1}_N) \qquad \mathrm{Cov}(A\mathbf{x}) = (I_C \otimes Q)(\Sigma \otimes I_N)(I_C \otimes Q)^H

The mixed-product property of Kronecker product tells us that, for sensible matrix sizes, (AB)(CD)=(ACBD)(A \otimes B)(C \otimes D) = (AC \otimes BD). Thus,

E[Ax]=(μQ1N)Cov(Ax)=(ΣIN), \mathbb{E}[A\mathbf{x}] = (\mu \otimes Q\mathbf{1}_N) \qquad \mathrm{Cov}(A\mathbf{x}) = (\Sigma \otimes I_N),

as QQH=INQQ^H = I_N. For zero-mean Normally distributed noise, this results in the channel-wise unitary transform of said noise having the exact same distribution as before the transformation.

Parallel MRI

This is a particularly useful result in MRI, where the measurement domain is a CC-channel (coil) Fourier domain contaminated by zero-mean additive white Gaussian noise (AWGN), i.e. we model measurements (yCNC\mathbf{y} \in \mathbb{C}^{NC}) of image (xCN\mathbf{x} \in \mathbb{C}^N) with coil sensitivity operator SCNC×NS \in \mathbb{C}^{NC \times N} via

y=(ICFN)Sx+v,vN(0, (ΣIN)). \mathbf{y} = (I_C \otimes F_N)S\mathbf{x} + v, \quad v \sim \mathcal{N}(0, ~ (\Sigma \otimes I_N)).

where FNF_N is the N-dimensional DFT matrix. Equivalently we can write yN((ICFN)Sx, (ΣIN))\mathbf{y} \sim \mathcal{N}((I_C \otimes F_N)S\mathbf{x}, ~ (\Sigma \otimes I_N)). As the DFT matrix is unitary, we know from the above discussion that the (multi-coil) image domain signal is contaminated with noise from the same distribution,

(ICFNH)yN(Sx, (ΣIN)). (I_C \otimes F_N^H)\mathbf{y} \sim \mathcal{N}(S\mathbf{x}, ~ (\Sigma \otimes I_N)).